Basudev Mandal/B.SC (H)/Chemistry/V/ CCT11/ Magnetic Chemistry

Russell Saunders coupling.

• Orgel diagram.

Russell Saunders coupling

- In atomic spectroscopy, Russell–Saunders coupling, also known as LS coupling, specifies a coupling scheme of electronic spin- and orbital-angular momenta.
- In light atoms, the interactions between the orbital angular momenta of individual electrons is stronger than the spin-orbit coupling between the spin and orbital angular momenta. These cases are described by L-S coupling.
- The interactions that can occur are of three types.
- spin-spin coupling
- orbit-orbit coupling
- spin-orbit coupling

• There are two principal coupling schemes used:

- i. Russell-Saunders (or L S) coupling
- ii. jj coupling.
- In the Russell Saunders scheme it is assumed that: spin-spin coupling > orbit-orbit coupling > spin-orbit coupling.
- This is found to give a good approximation for first row transition series where spin-orbit (J) coupling can generally be ignored, however for elements with atomic number greater than thirty, spin-orbit coupling becomes more significant and the j-j coupling scheme is used.

Spin-Spin Coupling

 S - the resultant spin quantum number for a system of electrons. The overall spin S arises from adding the individual m_s together and is as a result of coupling of spin quantum numbers for the separate electrons

Orbit-Orbit Coupling

 L - the total orbital angular momentum quantum number defines the energy state for a system of electrons. These states or term letters are represented as in later.

Spin-Orbit Coupling

- Coupling occurs between the resultant spin and orbital momenta of an electron which gives rise to J the total angular momentum quantum number. Multiplicity occurs when several levels are close together and is given by the formula (2S+1). The Russell Saunders term symbol that results from these considerations is given by: ^(2S+1)L
- S= + ½, hence (2S+1) = 2

For L=2, the Ground Term is written as ²D

The Russell Saunders term symbols for the other free ion configurations are given in the Table below.

	Terms for 3d ⁿ free ion configurations											
Configuration	The Tay		# of energy levels	Ground Term	Excited Terms							
d ¹ ,d ⁹	_		1	² D	-							
d²,d ⁸			5	³ F	³ P , ¹ G, ¹ D, ¹ S							
d³,d ⁷	:		8	⁴ F	4P , ² H, ² G, ² F, 2 x ² D, ² P							
d ⁴ ,d ⁶			16	⁵ D	³ H, ³ G, 2 x ³ F, ³ D, 2 x ³ P, ¹ I, 2 x ¹ G, ¹ F, 2 x ¹ D, 2 x ¹ S							
d ⁵			16	⁶ S	⁴ G, ⁴ F, ⁴ D, ⁴ P, ² I, ² H, 2 x ² G, 2 x ² F, 3 x ² D, ² P, ² S							

Hund's Rules

The Ground Terms are deduced by using Hund's Rules.
The two rules are:

The Ground Term will have the maximum multiplicity
If there is more than 1 Term with maximum

multiplicity, then the Ground Term will have the largest value of L.

d ⁿ	2	l	0	-l	-2	L	S	Ground Term
d ¹	Î					2	1/2	² D
d ²	Î	Î				3	1	³ F
d ³	Î	Î	Î			3	3/2	⁴ F
d ⁴	Î	Î	Î	Î		2	2	⁵ D
dS	Î	Î	Î	Î	Î	0	5/2	⁶ S
d ⁶	î↓	Î	Î	Î	Î	2	2	⁵ D
d ⁷	î↓	↑↓	Î	Î	Î	3	3/2	⁴ F
d ⁸	1↓	1↓	ţ	Î	Î	3	1	³ F
d ⁹	î↓	î↓	î↓	î↓	Î	2	1/2	² D

Orgel diagram for d1, d4, d6, d9

ligand field strength

• For a d⁷ configuration :

- in the +2 box are 2 electrons, so L for that box is 2*2= 4
- in the +1 box are 2 electrons, so L for that box is 1*2= 2
- in the 0 box is 1 electron, L is 0
- in the -1 box is 1 electron, **L** is -1*1= -1
- in the -2 box is 1 electron, **L** is -2*1= -2
- Total value of L is therefore +4 +2 +0 -1 -2 or L=3.
 Note that for 5 electrons with 1 electron in each box then the total value of L is 0. This is why L for a d¹ configuration is the same as for a d⁶.

- The other thing to note is the idea of the "hole" approach. A d¹ configuration can be treated as similar to a d⁹ configuration. In the first case there is 1 electron and in the latter there is an absence of an electron i.e., a hole.
- The overall result shown in the Table above is that:
- 4 configurations (d¹, d⁴, d⁶, d⁹) give rise to D ground terms,
- 4 configurations (d², d³, d⁷, d⁸) give rise to F ground terms
- and the d5 configuration gives an S ground term.